Step * of Lemma last-full-partition

[I:Interval]. ∀[p:partition(I)]. (last(full-partition(I;p)) right-endpoint(I) ∈ ℝsupposing icompact(I)
BY
(Auto THEN Unfold `full-partition` THEN (RWO "last_cons" THENA Auto')) }

1
.....rewrite subgoal..... 
1. Interval
2. icompact(I)
3. partition(I)
⊢ ¬↑null(p [right-endpoint(I)])

2
1. Interval
2. icompact(I)
3. partition(I)
⊢ last(p [right-endpoint(I)]) right-endpoint(I) ∈ ℝ


Latex:


Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)].  (last(full-partition(I;p))  =  right-endpoint(I))  supposing  icompact(I)


By


Latex:
(Auto  THEN  Unfold  `full-partition`  0  THEN  (RWO  "last\_cons"  0  THENA  Auto'))




Home Index