Nuprl Lemma : last-full-partition

[I:Interval]. ∀[p:partition(I)]. (last(full-partition(I;p)) right-endpoint(I) ∈ ℝsupposing icompact(I)


Proof




Definitions occuring in Statement :  full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) right-endpoint: right-endpoint(I) interval: Interval real: last: last(L) uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a full-partition: full-partition(I;p) squash: T prop: partition: partition(I) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q icompact: icompact(I) top: Top all: x:A. B[x] not: ¬A uiff: uiff(P;Q) false: False
Lemmas referenced :  equal_wf squash_wf true_wf real_wf last_cons append_wf cons_wf right-endpoint_wf nil_wf left-endpoint_wf iff_weakening_equal partition_wf icompact_wf interval_wf null_append subtype_rel_list top_wf null_cons_lemma assert_of_ff assert_functionality_wrt_uiff band_wf null_wf3 bfalse_wf band_ff_simp assert_wf not_wf last_append assert_elim btrue_neq_bfalse last_singleton
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache setElimination rename independent_isectElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed productElimination independent_functionElimination isect_memberEquality axiomEquality voidElimination voidEquality dependent_functionElimination addLevel impliesFunctionality lambdaFormation levelHypothesis

Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)].  (last(full-partition(I;p))  =  right-endpoint(I))  supposing  icompact(I)



Date html generated: 2017_10_03-AM-09_40_10
Last ObjectModification: 2017_07_28-AM-07_55_43

Theory : reals


Home Index