Nuprl Lemma : last_singleton

[T:Type]. ∀[x:T].  (last([x]) x ∈ T)


Proof




Definitions occuring in Statement :  last: last(L) cons: [a b] nil: [] uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T last: last(L) all: x:A. B[x] top: Top subtract: m select: L[n] cons: [a b]
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality isectElimination axiomEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    (last([x])  =  x)



Date html generated: 2016_05_14-PM-01_36_54
Last ObjectModification: 2015_12_26-PM-05_27_36

Theory : list_1


Home Index