Nuprl Lemma : last_singleton
∀[T:Type]. ∀[x:T].  (last([x]) = x ∈ T)
Proof
Definitions occuring in Statement : 
last: last(L)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
last: last(L)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
subtract: n - m
, 
select: L[n]
, 
cons: [a / b]
Lemmas referenced : 
length_of_cons_lemma, 
length_of_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    (last([x])  =  x)
Date html generated:
2016_05_14-PM-01_36_54
Last ObjectModification:
2015_12_26-PM-05_27_36
Theory : list_1
Home
Index