Nuprl Lemma : band_ff_simp

[u:𝔹]. u ∧b ff ff


Proof




Definitions occuring in Statement :  band: p ∧b q bfalse: ff bool: 𝔹 uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] band: p ∧b q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  bfalse_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis Error :universeIsType,  Error :isect_memberFormation_alt,  sqequalRule sqequalHypSubstitution unionElimination thin equalityElimination

Latex:
\mforall{}[u:\mBbbB{}].  u  \mwedge{}\msubb{}  ff  =  ff



Date html generated: 2019_06_20-AM-11_31_02
Last ObjectModification: 2018_09_26-AM-11_13_39

Theory : bool_1


Home Index