Nuprl Lemma : last_cons

[T:Type]. ∀[L:T List]. ∀[x:T].  last([x L]) last(L) ∈ supposing ¬↑null(L)


Proof




Definitions occuring in Statement :  last: last(L) null: null(as) cons: [a b] list: List assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  prop: not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  last_cons2 subtype_rel_list top_wf null_wf bool_wf eqtt_to_assert assert_of_null null_nil_lemma btrue_wf not_assert_elim and_wf equal_wf list_wf btrue_neq_bfalse eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base last_wf assert_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality cumulativity lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate baseClosed addLevel impliesFunctionality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].    last([x  /  L])  =  last(L)  supposing  \mneg{}\muparrow{}null(L)



Date html generated: 2017_04_14-AM-08_39_56
Last ObjectModification: 2017_02_27-PM-03_30_04

Theory : list_0


Home Index