Nuprl Lemma : last_wf

[T:Type]. ∀[L:T List].  last(L) ∈ supposing ¬↑null(L)


Proof




Definitions occuring in Statement :  last: last(L) null: null(as) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T universe: Type
Definitions unfolded in proof :  last: last(L) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A implies:  Q true: True false: False cons: [a b] top: Top bfalse: ff guard: {T} nat: decidable: Dec(P) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) prop:
Lemmas referenced :  select_wf subtract_wf length_wf subtract_nat_wf list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma istype-void null_cons_lemma length_wf_nat decidable__le istype-false not-le-2 sq_stable__le condition-implies-le minus-add istype-int minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt not_wf assert_wf null_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis natural_numberEquality independent_isectElimination dependent_functionElimination unionElimination independent_functionElimination voidElimination promote_hyp hypothesis_subsumption productElimination Error :isect_memberEquality_alt,  Error :inhabitedIsType,  Error :lambdaFormation_alt,  setElimination rename addEquality independent_pairFormation imageMemberEquality baseClosed imageElimination applyEquality Error :lambdaEquality_alt,  minusEquality Error :equalityIsType1,  equalityTransitivity equalitySymmetry axiomEquality Error :universeIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    last(L)  \mmember{}  T  supposing  \mneg{}\muparrow{}null(L)



Date html generated: 2019_06_20-PM-00_40_42
Last ObjectModification: 2018_10_06-AM-11_20_39

Theory : list_0


Home Index