Nuprl Lemma : null_append

[L1:Top List]. ∀[L2:Top].  (null(L1 L2) null(L1) ∧b null(L2))


Proof




Definitions occuring in Statement :  null: null(as) append: as bs list: List band: p ∧b q uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] band: p ∧b q ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bfalse: ff
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf equal-wf-T-base nat_wf colength_wf_list int_subtype_base list_wf list-cases list_ind_nil_lemma null_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base decidable__equal_int list_ind_cons_lemma null_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation axiomSqEquality applyEquality unionElimination Error :universeIsType,  promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination because_Cache Error :inhabitedIsType

Latex:
\mforall{}[L1:Top  List].  \mforall{}[L2:Top].    (null(L1  @  L2)  \msim{}  null(L1)  \mwedge{}\msubb{}  null(L2))



Date html generated: 2019_06_20-PM-01_35_24
Last ObjectModification: 2018_09_26-PM-05_52_24

Theory : list_1


Home Index