Step * 2 1 1 1 of Lemma locally-non-constant-via-rational


1. : ℝ
2. : ℝ
3. : ℝ
4. [a, b] ⟶ℝ
5. : ℝ
6. : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. : ℝ
11. u ≤ z
12. z ≤ v
13. c < f(z)
14. : ℕ+
15. ((r1/r(k)) c) < f(z)
16. : ℝ
17. r0 < d
18. ∀y:ℝ(((a ≤ z) ∧ (z ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|z y| ≤ d)  (|f[z] f[y]| ≤ (r1/r(k))))
19. u < z
⊢ ∃n:ℕ+. ∃w:ℤ((u ≤ (r(w))/n) ∧ ((r(w))/n ≤ v) ∧ (|z (r(w))/n| ≤ d))
BY
((InstLemma `rationals-dense-ext` [⌜rmin(d;z u)⌝;⌜z⌝]⋅ THENM RepeatFor (ParallelLast)) THEN Auto) }

1
.....wf..... 
1. : ℝ
2. : ℝ
3. : ℝ
4. [a, b] ⟶ℝ
5. : ℝ
6. : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. : ℝ
11. u ≤ z
12. z ≤ v
13. c < f(z)
14. : ℕ+
15. ((r1/r(k)) c) < f(z)
16. : ℝ
17. r0 < d
18. ∀y:ℝ(((a ≤ z) ∧ (z ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|z y| ≤ d)  (|f[z] f[y]| ≤ (r1/r(k))))
19. u < z
⊢ z ∈ {y:ℝ(z rmin(d;z u)) < y} 

2
1. : ℝ
2. : ℝ
3. : ℝ
4. [a, b] ⟶ℝ
5. : ℝ
6. : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. : ℝ
11. u ≤ z
12. z ≤ v
13. c < f(z)
14. : ℕ+
15. ((r1/r(k)) c) < f(z)
16. : ℝ
17. r0 < d
18. ∀y:ℝ(((a ≤ z) ∧ (z ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|z y| ≤ d)  (|f[z] f[y]| ≤ (r1/r(k))))
19. u < z
20. : ℕ+
21. : ℤ
22. (z rmin(d;z u)) < (r(m)/r(n))
23. (r(m)/r(n)) < z
⊢ u ≤ (r(m))/n

3
1. : ℝ
2. : ℝ
3. : ℝ
4. [a, b] ⟶ℝ
5. : ℝ
6. : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. : ℝ
11. u ≤ z
12. z ≤ v
13. c < f(z)
14. : ℕ+
15. ((r1/r(k)) c) < f(z)
16. : ℝ
17. r0 < d
18. ∀y:ℝ(((a ≤ z) ∧ (z ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|z y| ≤ d)  (|f[z] f[y]| ≤ (r1/r(k))))
19. u < z
20. : ℕ+
21. : ℤ
22. (z rmin(d;z u)) < (r(m)/r(n))
23. (r(m)/r(n)) < z
24. u ≤ (r(m))/n
⊢ (r(m))/n ≤ v

4
1. : ℝ
2. : ℝ
3. : ℝ
4. [a, b] ⟶ℝ
5. : ℝ
6. : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. : ℝ
11. u ≤ z
12. z ≤ v
13. c < f(z)
14. : ℕ+
15. ((r1/r(k)) c) < f(z)
16. : ℝ
17. r0 < d
18. ∀y:ℝ(((a ≤ z) ∧ (z ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|z y| ≤ d)  (|f[z] f[y]| ≤ (r1/r(k))))
19. u < z
20. : ℕ+
21. : ℤ
22. (z rmin(d;z u)) < (r(m)/r(n))
23. (r(m)/r(n)) < z
24. u ≤ (r(m))/n
25. (r(m))/n ≤ v
⊢ |z (r(m))/n| ≤ d


Latex:


Latex:

1.  a  :  \mBbbR{}
2.  b  :  \mBbbR{}
3.  c  :  \mBbbR{}
4.  f  :  [a,  b]  {}\mrightarrow{}\mBbbR{}
5.  u  :  \mBbbR{}
6.  v  :  \mBbbR{}
7.  a  \mleq{}  u
8.  u  <  v
9.  v  \mleq{}  b
10.  z  :  \mBbbR{}
11.  u  \mleq{}  z
12.  z  \mleq{}  v
13.  c  <  f(z)
14.  k  :  \mBbbN{}\msupplus{}
15.  ((r1/r(k))  +  c)  <  f(z)
16.  d  :  \mBbbR{}
17.  r0  <  d
18.  \mforall{}y:\mBbbR{}
            (((a  \mleq{}  z)  \mwedge{}  (z  \mleq{}  b))  {}\mRightarrow{}  ((a  \mleq{}  y)  \mwedge{}  (y  \mleq{}  b))  {}\mRightarrow{}  (|z  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|f[z]  -  f[y]|  \mleq{}  (r1/r(k))))
19.  u  <  z
\mvdash{}  \mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}w:\mBbbZ{}.  ((u  \mleq{}  (r(w))/n)  \mwedge{}  ((r(w))/n  \mleq{}  v)  \mwedge{}  (|z  -  (r(w))/n|  \mleq{}  d))


By


Latex:
((InstLemma  `rationals-dense-ext`  [\mkleeneopen{}z  -  rmin(d;z  -  u)\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{}]\mcdot{}  THENM  RepeatFor  2  (ParallelLast))
  THEN  Auto
  )




Home Index