Step
*
of Lemma
m-open-cover-iff
No Annotations
∀[X:Type]. ∀[d:metric(X)]. ∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ].
(m-open-cover(X;d;I;i,x.A[i;x])
⇐⇒ (∀i:I. m-open(X;d;x.A[i;x])) ∧ (∃b:X ⟶ ℕ+. ∃c:X ⟶ I. ∀x,y:X. ((mdist(d;x;y) ≤ (r1/r(b x)))
⇒ A[c x;y])))
BY
{ Auto }
1
1. [X] : Type
2. [d] : metric(X)
3. [I] : Type
4. [A] : I ⟶ X ⟶ ℙ
5. m-open-cover(X;d;I;i,x.A[i;x])
⊢ ∃b:X ⟶ ℕ+. ∃c:X ⟶ I. ∀x,y:X. ((mdist(d;x;y) ≤ (r1/r(b x)))
⇒ A[c x;y])
2
1. [X] : Type
2. [d] : metric(X)
3. [I] : Type
4. [A] : I ⟶ X ⟶ ℙ
5. ∀i:I. m-open(X;d;x.A[i;x])
6. ∃b:X ⟶ ℕ+. ∃c:X ⟶ I. ∀x,y:X. ((mdist(d;x;y) ≤ (r1/r(b x)))
⇒ A[c x;y])
⊢ m-open-cover(X;d;I;i,x.A[i;x])
Latex:
Latex:
No Annotations
\mforall{}[X:Type]. \mforall{}[d:metric(X)]. \mforall{}[I:Type]. \mforall{}[A:I {}\mrightarrow{} X {}\mrightarrow{} \mBbbP{}].
(m-open-cover(X;d;I;i,x.A[i;x])
\mLeftarrow{}{}\mRightarrow{} (\mforall{}i:I. m-open(X;d;x.A[i;x]))
\mwedge{} (\mexists{}b:X {}\mrightarrow{} \mBbbN{}\msupplus{}. \mexists{}c:X {}\mrightarrow{} I. \mforall{}x,y:X. ((mdist(d;x;y) \mleq{} (r1/r(b x))) {}\mRightarrow{} A[c x;y])))
By
Latex:
Auto
Home
Index