Step
*
of Lemma
m-regularize-mcauchy
∀[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X]. (λk.(6 * k) ∈ mcauchy(d;n.m-regularize(d;s) n))
BY
{ (Intros
THEN Unfold `mcauchy` 0
THEN (MemCD THENA Auto)
THEN MemTypeCD
THEN Try (Complete (Auto))
THEN Assert ⌜∀n:ℕ. ∀m:ℕn.
(((6 * k) ≤ n)
⇒ ((6 * k) ≤ m)
⇒ (mdist(d;m-regularize(d;s) n;m-regularize(d;s) m) ≤ (r1/r(k))))⌝
⋅) }
1
.....assertion.....
1. X : Type
2. d : metric(X)
3. s : ℕ ⟶ X
4. k : ℕ+
⊢ ∀n:ℕ. ∀m:ℕn. (((6 * k) ≤ n)
⇒ ((6 * k) ≤ m)
⇒ (mdist(d;m-regularize(d;s) n;m-regularize(d;s) m) ≤ (r1/r(k))))
2
1. X : Type
2. d : metric(X)
3. s : ℕ ⟶ X
4. k : ℕ+
5. ∀n:ℕ. ∀m:ℕn. (((6 * k) ≤ n)
⇒ ((6 * k) ≤ m)
⇒ (mdist(d;m-regularize(d;s) n;m-regularize(d;s) m) ≤ (r1/r(k))))
⊢ ∀n,m:ℕ. (((6 * k) ≤ n)
⇒ ((6 * k) ≤ m)
⇒ (mdist(d;m-regularize(d;s) n;m-regularize(d;s) m) ≤ (r1/r(k))))
Latex:
Latex:
\mforall{}[X:Type]. \mforall{}[d:metric(X)]. \mforall{}[s:\mBbbN{} {}\mrightarrow{} X]. (\mlambda{}k.(6 * k) \mmember{} mcauchy(d;n.m-regularize(d;s) n))
By
Latex:
(Intros
THEN Unfold `mcauchy` 0
THEN (MemCD THENA Auto)
THEN MemTypeCD
THEN Try (Complete (Auto))
THEN Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}m:\mBbbN{}n.
(((6 * k) \mleq{} n)
{}\mRightarrow{} ((6 * k) \mleq{} m)
{}\mRightarrow{} (mdist(d;m-regularize(d;s) n;m-regularize(d;s) m) \mleq{} (r1/r(k))))\mkleeneclose{}\mcdot{})
Home
Index