Nuprl Lemma : m-regularize-mcauchy
∀[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X].  (λk.(6 * k) ∈ mcauchy(d;n.m-regularize(d;s) n))
Proof
Definitions occuring in Statement : 
m-regularize: m-regularize(d;s)
, 
mcauchy: mcauchy(d;n.x[n])
, 
metric: metric(X)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
mcauchy: mcauchy(d;n.x[n])
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
m-regularize: m-regularize(d;s)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
let: let, 
sq_type: SQType(T)
, 
bool: 𝔹
, 
m-not-reg: m-not-reg(d;s;n)
, 
isl: isl(x)
, 
m-reg-test: m-reg-test(d;b;s;x)
, 
int-seg-case: int-seg-case(i;j;d)
, 
primrec: primrec(n;b;c)
, 
primtailrec: primtailrec(n;i;b;f)
, 
subtract: n - m
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
rleq_wf, 
mdist_wf, 
m-regularize_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
decidable__lt, 
rless_wf, 
nat_plus_wf, 
istype-nat, 
metric_wf, 
istype-universe, 
first-m-not-reg-property, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_rel_function, 
nat_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
first-m-not-reg_wf, 
value-type-has-value, 
set-value-type, 
lelt_wf, 
int-value-type, 
set_subtype_base, 
int_subtype_base, 
bool_wf, 
m-not-reg_wf, 
bfalse_wf, 
istype-less_than, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
subtype_base_sq, 
it_wf, 
unit_wf2, 
btrue_neq_bfalse, 
lt_int_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rleq-int-fractions2, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
rleq_functionality, 
mdist-same, 
req_weakening, 
equal-wf-base, 
le_int_wf, 
le_wf, 
bnot_wf, 
uiff_transitivity, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
not-m-not-reg-3regular, 
radd_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq-int-fractions, 
mul_bounds_1b, 
mul_nat_plus, 
radd_functionality_wrt_rleq, 
radd-int-fractions, 
rleq_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
mdist-symm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
natural_numberEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
functionIsType, 
because_Cache, 
applyEquality, 
closedConclusion, 
inrFormation_alt, 
productElimination, 
instantiate, 
universeEquality, 
lambdaFormation_alt, 
addEquality, 
imageElimination, 
inhabitedIsType, 
callbyvalueReduce, 
intEquality, 
productIsType, 
equalityIstype, 
sqequalBase, 
equalitySymmetry, 
isectIsType, 
baseClosed, 
equalityTransitivity, 
cumulativity, 
inrEquality_alt, 
equalityElimination, 
promote_hyp, 
baseApply
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].    (\mlambda{}k.(6  *  k)  \mmember{}  mcauchy(d;n.m-regularize(d;s)  n))
Date html generated:
2019_10_30-AM-07_04_08
Last ObjectModification:
2019_10_09-AM-09_17_15
Theory : reals
Home
Index