Nuprl Lemma : m-regularize-mcauchy

[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X].  k.(6 k) ∈ mcauchy(d;n.m-regularize(d;s) n))


Proof




Definitions occuring in Statement :  m-regularize: m-regularize(d;s) mcauchy: mcauchy(d;n.x[n]) metric: metric(X) nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] multiply: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] mcauchy: mcauchy(d;n.x[n]) member: t ∈ T all: x:A. B[x] sq_exists: x:A [B[x]] nat: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  m-regularize: m-regularize(d;s) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T le: A ≤ B subtype_rel: A ⊆B less_than': less_than'(a;b) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] let: let sq_type: SQType(T) bool: 𝔹 m-not-reg: m-not-reg(d;s;n) isl: isl(x) m-reg-test: m-reg-test(d;b;s;x) int-seg-case: int-seg-case(i;j;d) primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) subtract: m bfalse: ff uiff: uiff(P;Q) unit: Unit it: btrue: tt bnot: ¬bb ifthenelse: if then else fi  assert: b rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y req_int_terms: t1 ≡ t2
Lemmas referenced :  nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le rleq_wf mdist_wf m-regularize_wf rdiv_wf int-to-real_wf rless-int nat_properties decidable__lt rless_wf nat_plus_wf istype-nat metric_wf istype-universe first-m-not-reg-property int_seg_properties itermAdd_wf int_term_value_add_lemma subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self first-m-not-reg_wf value-type-has-value set-value-type lelt_wf int-value-type set_subtype_base int_subtype_base bool_wf m-not-reg_wf bfalse_wf istype-less_than subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int subtype_base_sq it_wf unit_wf2 btrue_neq_bfalse lt_int_wf intformeq_wf int_formula_prop_eq_lemma rleq-int-fractions2 eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf rleq_functionality mdist-same req_weakening equal-wf-base le_int_wf le_wf bnot_wf uiff_transitivity assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int not-m-not-reg-3regular radd_wf rleq_functionality_wrt_implies rleq_weakening_equal rleq-int-fractions mul_bounds_1b mul_nat_plus radd_functionality_wrt_rleq radd-int-fractions rleq_weakening req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma mdist-symm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt dependent_set_memberEquality_alt multiplyEquality natural_numberEquality sqequalHypSubstitution setElimination thin rename cut hypothesisEquality hypothesis introduction extract_by_obid isectElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType functionIsType because_Cache applyEquality closedConclusion inrFormation_alt productElimination instantiate universeEquality lambdaFormation_alt addEquality imageElimination inhabitedIsType callbyvalueReduce intEquality productIsType equalityIstype sqequalBase equalitySymmetry isectIsType baseClosed equalityTransitivity cumulativity inrEquality_alt equalityElimination promote_hyp baseApply

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].    (\mlambda{}k.(6  *  k)  \mmember{}  mcauchy(d;n.m-regularize(d;s)  n))



Date html generated: 2019_10_30-AM-07_04_08
Last ObjectModification: 2019_10_09-AM-09_17_15

Theory : reals


Home Index