Nuprl Lemma : first-m-not-reg-property

[X:Type]
  ∀d:metric(X). ∀k:ℕ. ∀s:ℕk ⟶ X.
    ((first-m-not-reg(d;s;k) 0 ∈ ℤ ⇐⇒ ∀n:ℕk. m-not-reg(d;s;n) ff)
    ∧ let first-m-not-reg(d;s;k) in
          (∀n:ℕi. m-not-reg(d;s;n) ff) ∧ m-not-reg(d;s;i) tt 
      supposing 0 < first-m-not-reg(d;s;k))


Proof




Definitions occuring in Statement :  first-m-not-reg: first-m-not-reg(d;s;k) m-not-reg: m-not-reg(d;s;n) metric: metric(X) int_seg: {i..j-} nat: bfalse: ff btrue: tt bool: 𝔹 less_than: a < b let: let uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] subtract: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] first-m-not-reg: first-m-not-reg(d;s;k) member: t ∈ T nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m sq_stable: SqStable(P) true: True so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b let: let cand: c∧ B
Lemmas referenced :  search_property m-not-reg_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtype_rel_function int_seg_wf int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes zero-add sq_stable__le less-iff-le add_functionality_wrt_le le-add-cancel2 subtype_rel_self istype-nat metric_wf istype-universe first-m-not-reg_wf set_subtype_base lelt_wf int_subtype_base bool_wf int_seg_subtype_nat bfalse_wf eqtt_to_assert istype-assert intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__equal_int decidable__lt assert_elim btrue_neq_bfalse member-less_than istype-less_than subtract_wf itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma iff_imp_equal_bool btrue_wf istype-true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality lambdaEquality_alt isectElimination dependent_set_memberEquality_alt setElimination rename hypothesis productElimination imageElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType applyEquality because_Cache addEquality minusEquality imageMemberEquality baseClosed promote_hyp functionIsType instantiate universeEquality equalityIstype intEquality sqequalBase equalitySymmetry equalityTransitivity inhabitedIsType equalityElimination cumulativity applyLambdaEquality productIsType independent_pairEquality axiomEquality functionIsTypeImplies isectIsType

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}k:\mBbbN{}.  \mforall{}s:\mBbbN{}k  {}\mrightarrow{}  X.
        ((first-m-not-reg(d;s;k)  =  0  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}k.  m-not-reg(d;s;n)  =  ff)
        \mwedge{}  let  i  =  first-m-not-reg(d;s;k)  -  1  in
                    (\mforall{}n:\mBbbN{}i.  m-not-reg(d;s;n)  =  ff)  \mwedge{}  m-not-reg(d;s;i)  =  tt 
            supposing  0  <  first-m-not-reg(d;s;k))



Date html generated: 2019_10_30-AM-07_02_16
Last ObjectModification: 2019_10_03-PM-06_01_27

Theory : reals


Home Index