Nuprl Lemma : m-regularize_wf

[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X].  (m-regularize(d;s) ∈ ℕ ⟶ X)


Proof




Definitions occuring in Statement :  m-regularize: m-regularize(d;s) metric: metric(X) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  m-regularize_wf_finite nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtype_rel_function int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than nat_wf istype-nat metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt addEquality setElimination rename hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType applyEquality because_Cache lambdaFormation_alt productIsType axiomEquality equalityTransitivity equalitySymmetry functionIsType isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].    (m-regularize(d;s)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  X)



Date html generated: 2019_10_30-AM-07_03_20
Last ObjectModification: 2019_10_03-PM-06_06_02

Theory : reals


Home Index