Nuprl Lemma : m-regularize_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X].  (m-regularize(d;s) ∈ ℕ ⟶ X)
Proof
Definitions occuring in Statement : 
m-regularize: m-regularize(d;s)
, 
metric: metric(X)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
m-regularize_wf_finite, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
subtype_rel_function, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
nat_wf, 
istype-nat, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
functionExtensionality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
because_Cache, 
lambdaFormation_alt, 
productIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].    (m-regularize(d;s)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  X)
Date html generated:
2019_10_30-AM-07_03_20
Last ObjectModification:
2019_10_03-PM-06_06_02
Theory : reals
Home
Index