Nuprl Lemma : radd-int-fractions
∀[a,b:ℤ]. ∀[c,d:ℕ+].  (((r(a)/r(c)) + (r(b)/r(d))) = (r((a * d) + (b * c))/r(c * d)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
req: x = y
, 
radd: a + b
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
Lemmas referenced : 
req_witness, 
radd_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
mul_bounds_1b, 
nat_plus_wf, 
rmul_wf, 
rneq_functionality, 
rmul-int, 
req_weakening, 
rmul_preserves_req, 
req_wf, 
rinv_wf2, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
uiff_transitivity, 
req_functionality, 
rmul_functionality, 
rdiv_functionality, 
req_transitivity, 
req_inversion, 
radd-int, 
radd_functionality, 
rinv-of-rmul, 
rmul-rinv, 
rmul-rinv3, 
rmul-int-rdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
multiplyEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[c,d:\mBbbN{}\msupplus{}].    (((r(a)/r(c))  +  (r(b)/r(d)))  =  (r((a  *  d)  +  (b  *  c))/r(c  *  d)))
Date html generated:
2017_10_03-AM-08_38_00
Last ObjectModification:
2017_07_28-AM-07_30_25
Theory : reals
Home
Index