Step
*
1
of Lemma
mdist-m-cont
1. [X] : Type
2. d : metric(X)
3. a : X
4. e : {e:ℝ| r0 < e}
5. x : X
6. x' : X
7. mdist(d;x;x') < e
⊢ (mdist(d;a;x') - e) < mdist(d;a;x)
BY
{ ((Assert mdist(d;a;x') ≤ (mdist(d;a;x) + mdist(d;x;x')) BY Auto) THEN RWO "-1" 0 THEN Auto) }
Latex:
Latex:
1. [X] : Type
2. d : metric(X)
3. a : X
4. e : \{e:\mBbbR{}| r0 < e\}
5. x : X
6. x' : X
7. mdist(d;x;x') < e
\mvdash{} (mdist(d;a;x') - e) < mdist(d;a;x)
By
Latex:
((Assert mdist(d;a;x') \mleq{} (mdist(d;a;x) + mdist(d;x;x')) BY Auto) THEN RWO "-1" 0 THEN Auto)
Home
Index