Nuprl Lemma : mdist-m-cont
∀[X:Type]. ∀d:metric(X). ∀a:X.  m-cont-real-fun(X;d;x.mdist(d;a;x))
Proof
Definitions occuring in Statement : 
m-cont-real-fun: m-cont-real-fun(X;d;x.f[x])
, 
mdist: mdist(d;x;y)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
m-cont-real-fun: m-cont-real-fun(X;d;x.f[x])
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rabs-difference-bound-iff, 
mdist_wf, 
rless_wf, 
rabs_wf, 
rsub_wf, 
real_wf, 
int-to-real_wf, 
metric_wf, 
istype-universe, 
mdist-triangle-inequality, 
radd_wf, 
rless-implies-rless, 
itermSubtract_wf, 
itermVar_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
rless_functionality_wrt_implies, 
rsub_functionality_wrt_rleq, 
rleq_weakening_equal, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
rless_functionality, 
radd_functionality, 
mdist-symm, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
universeIsType, 
sqequalRule, 
functionIsType, 
setIsType, 
natural_numberEquality, 
instantiate, 
universeEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}a:X.    m-cont-real-fun(X;d;x.mdist(d;a;x))
Date html generated:
2019_10_30-AM-06_27_49
Last ObjectModification:
2019_10_02-AM-10_03_01
Theory : reals
Home
Index