Nuprl Lemma : rabs-difference-bound-iff

x,y,z:ℝ.  (|x y| < ⇐⇒ ((y z) < x) ∧ (x < (y z)))


Proof




Definitions occuring in Statement :  rless: x < y rabs: |x| rsub: y radd: b real: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A uiff: uiff(P;Q) prop: cand: c∧ B
Lemmas referenced :  rabs-as-rmax rmax_strict_lb rsub_wf rminus_wf rless-implies-rless real_term_polynomial itermSubtract_wf itermVar_wf itermMinus_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 radd_wf itermAdd_wf real_term_value_add_lemma rless_wf rmax_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation independent_pairFormation dependent_functionElimination hypothesisEquality productElimination independent_functionElimination independent_isectElimination natural_numberEquality computeAll lambdaEquality int_eqEquality intEquality because_Cache productEquality

Latex:
\mforall{}x,y,z:\mBbbR{}.    (|x  -  y|  <  z  \mLeftarrow{}{}\mRightarrow{}  ((y  -  z)  <  x)  \mwedge{}  (x  <  (y  +  z)))



Date html generated: 2017_10_03-AM-08_39_15
Last ObjectModification: 2017_07_28-AM-07_30_41

Theory : reals


Home Index