Nuprl Lemma : mdist-triangle-inequality

[X:Type]. ∀[d:metric(X)]. ∀[x,y,z:X].  (mdist(d;x;z) ≤ (mdist(d;x;y) mdist(d;y;z)))


Proof




Definitions occuring in Statement :  mdist: mdist(d;x;y) metric: metric(X) rleq: x ≤ y radd: b uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  le_witness_for_triv metric_wf istype-universe mdist_wf radd_wf mdist-triangle-inequality1 rleq_functionality req_weakening radd_functionality mdist-symm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination productElimination equalityTransitivity hypothesis equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate universeEquality because_Cache

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y,z:X].    (mdist(d;x;z)  \mleq{}  (mdist(d;x;y)  +  mdist(d;y;z)))



Date html generated: 2019_10_29-AM-10_58_37
Last ObjectModification: 2019_10_02-AM-09_40_19

Theory : reals


Home Index