Step
*
2
of Lemma
mdist-m-cont
1. [X] : Type
2. d : metric(X)
3. a : X
4. e : {e:ℝ| r0 < e}
5. x : X
6. x' : X
7. mdist(d;x;x') < e
8. (mdist(d;a;x') - e) < mdist(d;a;x)
⊢ mdist(d;a;x) < (mdist(d;a;x') + e)
BY
{ ((Assert mdist(d;a;x) ≤ (mdist(d;a;x') + mdist(d;x';x)) BY Auto) THEN RWO "-1" 0 THEN Auto) }
1
1. [X] : Type
2. d : metric(X)
3. a : X
4. e : {e:ℝ| r0 < e}
5. x : X
6. x' : X
7. mdist(d;x;x') < e
8. (mdist(d;a;x') - e) < mdist(d;a;x)
9. mdist(d;a;x) ≤ (mdist(d;a;x') + mdist(d;x';x))
⊢ (mdist(d;a;x') + mdist(d;x';x)) < (mdist(d;a;x') + e)
Latex:
Latex:
1. [X] : Type
2. d : metric(X)
3. a : X
4. e : \{e:\mBbbR{}| r0 < e\}
5. x : X
6. x' : X
7. mdist(d;x;x') < e
8. (mdist(d;a;x') - e) < mdist(d;a;x)
\mvdash{} mdist(d;a;x) < (mdist(d;a;x') + e)
By
Latex:
((Assert mdist(d;a;x) \mleq{} (mdist(d;a;x') + mdist(d;x';x)) BY Auto) THEN RWO "-1" 0 THEN Auto)
Home
Index