Nuprl Lemma : member_rciint_lemma
∀r,l:Top. (r ∈ [l, ∞) ~ l ≤ r)
Proof
Definitions occuring in Statement :
rciint: [l, ∞)
,
i-member: r ∈ I
,
rleq: x ≤ y
,
top: Top
,
all: ∀x:A. B[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
rciint: [l, ∞)
,
i-member: r ∈ I
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
hypothesis,
lemma_by_obid,
sqequalRule
Latex:
\mforall{}r,l:Top. (r \mmember{} [l, \minfty{}) \msim{} l \mleq{} r)
Date html generated:
2016_05_18-AM-08_20_57
Last ObjectModification:
2015_12_27-PM-11_55_07
Theory : reals
Home
Index