Nuprl Lemma : member_rciint_lemma
∀r,l:Top.  (r ∈ [l, ∞) ~ l ≤ r)
Proof
Definitions occuring in Statement : 
rciint: [l, ∞)
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
rciint: [l, ∞)
, 
i-member: r ∈ I
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}r,l:Top.    (r  \mmember{}  [l,  \minfty{})  \msim{}  l  \mleq{}  r)
Date html generated:
2016_05_18-AM-08_20_57
Last ObjectModification:
2015_12_27-PM-11_55_07
Theory : reals
Home
Index