Nuprl Lemma : member_rciint_lemma

r,l:Top.  (r ∈ [l, ∞l ≤ r)


Proof




Definitions occuring in Statement :  rciint: [l, ∞) i-member: r ∈ I rleq: x ≤ y top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rciint: [l, ∞) i-member: r ∈ I
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule

Latex:
\mforall{}r,l:Top.    (r  \mmember{}  [l,  \minfty{})  \msim{}  l  \mleq{}  r)



Date html generated: 2016_05_18-AM-08_20_57
Last ObjectModification: 2015_12_27-PM-11_55_07

Theory : reals


Home Index