Nuprl Lemma : member_ricint_lemma
∀r,u:Top.  (r ∈ (-∞, u] ~ r ≤ u)
Proof
Definitions occuring in Statement : 
ricint: (-∞, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
ricint: (-∞, u]
, 
i-member: r ∈ I
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}r,u:Top.    (r  \mmember{}  (-\minfty{},  u]  \msim{}  r  \mleq{}  u)
Date html generated:
2016_05_18-AM-08_36_40
Last ObjectModification:
2015_12_27-PM-11_53_32
Theory : reals
Home
Index