Nuprl Lemma : member_ricint_lemma

r,u:Top.  (r ∈ (-∞u] r ≤ u)


Proof




Definitions occuring in Statement :  ricint: (-∞u] i-member: r ∈ I rleq: x ≤ y top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T ricint: (-∞u] i-member: r ∈ I
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule

Latex:
\mforall{}r,u:Top.    (r  \mmember{}  (-\minfty{},  u]  \msim{}  r  \mleq{}  u)



Date html generated: 2016_05_18-AM-08_36_40
Last ObjectModification: 2015_12_27-PM-11_53_32

Theory : reals


Home Index