Nuprl Lemma : member_rioint_lemma
∀r,u:Top.  (r ∈ (-∞, u) ~ r < u)
Proof
Definitions occuring in Statement : 
rioint: (-∞, u), 
i-member: r ∈ I, 
rless: x < y, 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
rioint: (-∞, u), 
i-member: r ∈ I
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}r,u:Top.    (r  \mmember{}  (-\minfty{},  u)  \msim{}  r  <  u)
 Date html generated: 
2016_05_18-AM-08_37_04
 Last ObjectModification: 
2015_12_27-PM-11_52_27
Theory : reals
Home
Index