Nuprl Lemma : member_rocint_lemma
∀r,u,l:Top. (r ∈ (l, u] ~ (l < r) ∧ (r ≤ u))
Proof
Definitions occuring in Statement :
rocint: (l, u]
,
i-member: r ∈ I
,
rleq: x ≤ y
,
rless: x < y
,
top: Top
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
rocint: (l, u]
,
i-member: r ∈ I
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
hypothesis,
lemma_by_obid,
sqequalRule
Latex:
\mforall{}r,u,l:Top. (r \mmember{} (l, u] \msim{} (l < r) \mwedge{} (r \mleq{} u))
Date html generated:
2016_05_18-AM-08_21_24
Last ObjectModification:
2015_12_27-PM-11_56_03
Theory : reals
Home
Index