Step
*
of Lemma
mtb-cantor-map-onto
∀[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[mtb:m-TB(X;d)]. ∀[x:X].
mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x
BY
{ (Auto
THEN (InstLemma `mtb-point-cantor-seq-regular` [⌜X⌝;⌜d⌝;⌜mtb⌝;⌜x⌝]⋅ THENA Auto)
THEN (InstLemma `m-regularize-of-regular` [⌜X⌝;⌜d⌝;⌜mtb-seq(mtb;mtb-point-cantor(mtb;x))⌝]⋅
THENA (Auto THEN InstLemma `m-k-regular-monotone` [⌜1⌝;⌜2⌝]⋅ THEN Auto)
)
THEN (InstLemma `m-regularize-mcauchy` [⌜X⌝;⌜d⌝]⋅ THENA Auto)
THEN Unfold `mtb-cantor-map` 0
THEN (BLemma `cauchy-mlimit-unique` THEN Auto)
THEN RWO "-2" 0
THEN Auto) }
Latex:
Latex:
\mforall{}[X:Type]. \mforall{}[d:metric(X)]. \mforall{}[cmplt:mcomplete(X with d)]. \mforall{}[mtb:m-TB(X;d)]. \mforall{}[x:X].
mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) \mequiv{} x
By
Latex:
(Auto
THEN (InstLemma `mtb-point-cantor-seq-regular` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}mtb\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `m-regularize-of-regular` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}mtb-seq(mtb;mtb-point-cantor(mtb;x))\mkleeneclose{}]\mcdot{}
THENA (Auto THEN InstLemma `m-k-regular-monotone` [\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{}]\mcdot{} THEN Auto)
)
THEN (InstLemma `m-regularize-mcauchy` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Unfold `mtb-cantor-map` 0
THEN (BLemma `cauchy-mlimit-unique` THEN Auto)
THEN RWO "-2" 0
THEN Auto)
Home
Index