Nuprl Lemma : mtb-cantor-map-onto

[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[mtb:m-TB(X;d)]. ∀[x:X].
  mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x


Proof




Definitions occuring in Statement :  mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p) mtb-point-cantor: mtb-point-cantor(mtb;p) m-TB: m-TB(X;d) mcomplete: mcomplete(M) mk-metric-space: with d meq: x ≡ y metric: metric(X) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p) guard: {T} squash: T prop: metric: metric(X) so_lambda: λ2x.t[x] true: True so_apply: x[s] subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q meq: x ≡ y
Lemmas referenced :  mtb-point-cantor-seq-regular m-regularize-of-regular mtb-seq_wf mtb-point-cantor_wf m-k-regular-monotone istype-void istype-le istype-false m-regularize-mcauchy cauchy-mlimit-unique nat_wf mconverges-to_wf squash_wf true_wf istype-nat real_wf subtype_rel_self iff_weakening_equal mtb-seq-mtb-point-cantor-mconverges-to req_witness mtb-cantor-map_wf int-to-real_wf m-TB_wf mcomplete_wf mk-metric-space_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination because_Cache hypothesis independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule lambdaFormation_alt voidElimination equalityTransitivity equalitySymmetry functionExtensionality applyEquality lambdaEquality_alt imageElimination universeIsType functionIsType setElimination rename imageMemberEquality baseClosed instantiate productElimination independent_functionElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[x:X].
    mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x))  \mequiv{}  x



Date html generated: 2019_10_30-AM-07_10_12
Last ObjectModification: 2019_10_09-AM-09_40_57

Theory : reals


Home Index