Nuprl Lemma : mtb-cantor-map-onto
∀[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[mtb:m-TB(X;d)]. ∀[x:X].
  mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x
Proof
Definitions occuring in Statement : 
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p)
, 
mtb-point-cantor: mtb-point-cantor(mtb;p)
, 
m-TB: m-TB(X;d)
, 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
meq: x ≡ y
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p)
, 
guard: {T}
, 
squash: ↓T
, 
prop: ℙ
, 
metric: metric(X)
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
meq: x ≡ y
Lemmas referenced : 
mtb-point-cantor-seq-regular, 
m-regularize-of-regular, 
mtb-seq_wf, 
mtb-point-cantor_wf, 
m-k-regular-monotone, 
istype-void, 
istype-le, 
istype-false, 
m-regularize-mcauchy, 
cauchy-mlimit-unique, 
nat_wf, 
mconverges-to_wf, 
squash_wf, 
true_wf, 
istype-nat, 
real_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mtb-seq-mtb-point-cantor-mconverges-to, 
req_witness, 
mtb-cantor-map_wf, 
int-to-real_wf, 
m-TB_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
functionIsType, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[x:X].
    mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x))  \mequiv{}  x
Date html generated:
2019_10_30-AM-07_10_12
Last ObjectModification:
2019_10_09-AM-09_40_57
Theory : reals
Home
Index