Nuprl Lemma : m-TB_wf

[X:Type]. ∀[d:metric(X)].  (m-TB(X;d) ∈ Type)


Proof




Definitions occuring in Statement :  m-TB: m-TB(X;d) metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T m-TB: m-TB(X;d) subtype_rel: A ⊆B spreadn: spread3 so_lambda: λ2x.t[x] nat: uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s]
Lemmas referenced :  nat_wf nat_plus_wf int_seg_wf all_wf rleq_wf mdist_wf rdiv_wf int-to-real_wf rless-int nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf rless_wf istype-nat metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality productEquality closedConclusion functionEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin natural_numberEquality applyEquality hypothesisEquality because_Cache productElimination lambdaEquality_alt addEquality setElimination rename independent_isectElimination inrFormation_alt dependent_functionElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (m-TB(X;d)  \mmember{}  Type)



Date html generated: 2019_10_30-AM-06_50_32
Last ObjectModification: 2019_10_02-PM-02_16_27

Theory : reals


Home Index