Nuprl Lemma : mtb-seq-mtb-point-cantor-mconverges-to

[X:Type]. ∀d:metric(X). ∀mtb:m-TB(X;d). ∀x:X.  lim n→∞.mtb-seq(mtb;mtb-point-cantor(mtb;x)) x


Proof




Definitions occuring in Statement :  mtb-point-cantor: mtb-point-cantor(mtb;p) mtb-seq: mtb-seq(mtb;s) m-TB: m-TB(X;d) mconverges-to: lim n→∞.x[n] y metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] apply: a universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] m-TB: m-TB(X;d) mtb-point-cantor: mtb-point-cantor(mtb;p) mtb-seq: mtb-seq(mtb;s) spreadn: spread3 mconverges-to: lim n→∞.x[n] y sq_exists: x:A [B[x]] member: t ∈ T subtype_rel: A ⊆B implies:  Q nat_plus: + nat: uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  nat_plus_subtype_nat istype-le istype-nat rleq_wf mdist_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf m-TB_wf metric_wf istype-universe itermAdd_wf intformle_wf int_term_value_add_lemma int_formula_prop_le_lemma rleq-int-fractions istype-less_than decidable__le itermMultiply_wf int_term_value_mul_lemma rleq_functionality mdist-symm req_weakening rleq_functionality_wrt_implies rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution setElimination thin rename productElimination sqequalRule dependent_set_memberFormation_alt cut hypothesisEquality applyEquality introduction extract_by_obid hypothesis isectElimination functionIsType because_Cache universeIsType closedConclusion natural_numberEquality independent_isectElimination inrFormation_alt dependent_functionElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation instantiate universeEquality addEquality dependent_set_memberEquality_alt multiplyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}mtb:m-TB(X;d).  \mforall{}x:X.    lim  n\mrightarrow{}\minfty{}.mtb-seq(mtb;mtb-point-cantor(mtb;x))  n  =  x



Date html generated: 2019_10_30-AM-06_57_43
Last ObjectModification: 2019_10_03-PM-03_45_26

Theory : reals


Home Index