Nuprl Lemma : mtb-cantor-map_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[mtb:m-TB(X;d)]. ∀[p:mtb-cantor(mtb)].
  (mtb-cantor-map(d;cmplt;mtb;p) ∈ X)
Proof
Definitions occuring in Statement : 
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p), 
mtb-cantor: mtb-cantor(mtb), 
m-TB: m-TB(X;d), 
mcomplete: mcomplete(M), 
mk-metric-space: X with d, 
metric: metric(X), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p), 
guard: {T}, 
prop: ℙ
Lemmas referenced : 
m-regularize-mcauchy, 
cauchy-mlimit_wf, 
m-regularize_wf, 
mtb-seq_wf, 
mtb-cantor_wf, 
m-TB_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[p:mtb-cantor(mtb)].
    (mtb-cantor-map(d;cmplt;mtb;p)  \mmember{}  X)
 Date html generated: 
2019_10_30-AM-07_05_11
 Last ObjectModification: 
2019_10_09-AM-09_21_27
Theory : reals
Home
Index