Nuprl Lemma : mtb-seq_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[mtb:m-TB(X;d)]. ∀[s:mtb-cantor(mtb)].  (mtb-seq(mtb;s) ∈ ℕ ⟶ X)
Proof
Definitions occuring in Statement : 
mtb-seq: mtb-seq(mtb;s)
, 
mtb-cantor: mtb-cantor(mtb)
, 
m-TB: m-TB(X;d)
, 
metric: metric(X)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
m-TB: m-TB(X;d)
, 
mtb-cantor: mtb-cantor(mtb)
, 
pi1: fst(t)
, 
mtb-seq: mtb-seq(mtb;s)
, 
spreadn: spread3
Lemmas referenced : 
istype-nat, 
mtb-cantor_wf, 
m-TB_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
universeIsType, 
isectElimination, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[s:mtb-cantor(mtb)].    (mtb-seq(mtb;s)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  X)
Date html generated:
2019_10_30-AM-06_56_27
Last ObjectModification:
2019_10_02-PM-02_30_56
Theory : reals
Home
Index