Nuprl Lemma : mtb-seq_wf

[X:Type]. ∀[d:metric(X)]. ∀[mtb:m-TB(X;d)]. ∀[s:mtb-cantor(mtb)].  (mtb-seq(mtb;s) ∈ ℕ ⟶ X)


Proof




Definitions occuring in Statement :  mtb-seq: mtb-seq(mtb;s) mtb-cantor: mtb-cantor(mtb) m-TB: m-TB(X;d) metric: metric(X) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T m-TB: m-TB(X;d) mtb-cantor: mtb-cantor(mtb) pi1: fst(t) mtb-seq: mtb-seq(mtb;s) spreadn: spread3
Lemmas referenced :  istype-nat mtb-cantor_wf m-TB_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule lambdaEquality_alt applyEquality hypothesisEquality introduction extract_by_obid hypothesis universeIsType isectElimination instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[s:mtb-cantor(mtb)].    (mtb-seq(mtb;s)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  X)



Date html generated: 2019_10_30-AM-06_56_27
Last ObjectModification: 2019_10_02-PM-02_30_56

Theory : reals


Home Index