Nuprl Lemma : mtb-point-cantor_wf

[X:Type]. ∀[d:metric(X)]. ∀[mtb:m-TB(X;d)]. ∀[p:X].  (mtb-point-cantor(mtb;p) ∈ mtb-cantor(mtb))


Proof




Definitions occuring in Statement :  mtb-point-cantor: mtb-point-cantor(mtb;p) mtb-cantor: mtb-cantor(mtb) m-TB: m-TB(X;d) metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  mtb-point-cantor: mtb-point-cantor(mtb;p) mtb-cantor: mtb-cantor(mtb) uall: [x:A]. B[x] member: t ∈ T m-TB: m-TB(X;d) spreadn: spread3 pi1: fst(t)
Lemmas referenced :  m-TB_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectElimination isectIsTypeImplies inhabitedIsType extract_by_obid instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[p:X].    (mtb-point-cantor(mtb;p)  \mmember{}  mtb-cantor(mtb))



Date html generated: 2019_10_30-AM-06_57_22
Last ObjectModification: 2019_10_02-PM-02_44_07

Theory : reals


Home Index