Step * 1 2 1 of Lemma near-root-rational


1. {2...}
2. : ℤ
3. : ℕ+
4. : ℕ+
5. (0 ≤ p) ∨ (↑isOdd(k))
6. : 𝔹
7. (q =z 1) ∧b (n =z 1)
8. : ℕ+
9. if then else fi  ∈ ℕ+
10. : ℕ+
11. b^(k 1) ∈ ℕ+
12. : ℤ
13. if then else fi  ∈ ℤ
14. : ℕ+
15. (if then else fi  1) ∈ ℕ+
16. : ℕ
17. : ℕ+
18. |a| y^k < (x b)^k
19. (x b)^k ≤ ((|a| d) y^k)
20. 0 ≤ if p <then -x else fi 
⊢ 0 ≤ p
BY
(SplitOnHypITE -1  THEN Auto THEN (Assert ⌜0 ∈ ℤ⌝⋅ THENA Auto') THEN Eliminate ⌜x⌝⋅)⋅ }

1
1. {2...}
2. : ℤ
3. : ℕ+
4. : ℕ+
5. (0 ≤ p) ∨ (↑isOdd(k))
6. : 𝔹
7. (q =z 1) ∧b (n =z 1)
8. : ℕ+
9. if then else fi  ∈ ℕ+
10. : ℕ+
11. b^(k 1) ∈ ℕ+
12. : ℤ
13. if then else fi  ∈ ℤ
14. : ℕ+
15. (if then else fi  1) ∈ ℕ+
16. : ℕ
17. : ℕ+
18. |a| y^k < (0 b)^k
19. (0 b)^k ≤ ((|a| d) y^k)
20. 0 ≤ (-0)
21. p < 0
22. 0 ∈ ℤ
⊢ 0 ≤ p


Latex:


Latex:

1.  k  :  \{2...\}
2.  p  :  \mBbbZ{}
3.  q  :  \mBbbN{}\msupplus{}
4.  n  :  \mBbbN{}\msupplus{}
5.  (0  \mleq{}  p)  \mvee{}  (\muparrow{}isOdd(k))
6.  s  :  \mBbbB{}
7.  s  =  (q  =\msubz{}  1)  \mwedge{}\msubb{}  (n  =\msubz{}  1)
8.  b  :  \mBbbN{}\msupplus{}
9.  b  =  if  s  then  2  else  q  *  n  fi 
10.  c  :  \mBbbN{}\msupplus{}
11.  c  =  b\^{}(k  -  1)
12.  a  :  \mBbbZ{}
13.  a  =  if  s  then  p  *  2  *  c  else  p  *  n  *  c  fi 
14.  d  :  \mBbbN{}\msupplus{}
15.  d  =  (if  s  then  2  *  c  else  c  fi    -  1)
16.  x  :  \mBbbN{}
17.  y  :  \mBbbN{}\msupplus{}
18.  |a|  *  y\^{}k  <  (x  *  b)\^{}k
19.  (x  *  b)\^{}k  \mleq{}  ((|a|  +  d)  *  y\^{}k)
20.  0  \mleq{}  if  p  <z  0  then  -x  else  x  fi 
\mvdash{}  0  \mleq{}  p


By


Latex:
(SplitOnHypITE  -1    THEN  Auto  THEN  (Assert  \mkleeneopen{}x  =  0\mkleeneclose{}\mcdot{}  THENA  Auto')  THEN  Eliminate  \mkleeneopen{}x\mkleeneclose{}\mcdot{})\mcdot{}




Home Index