Step
*
1
of Lemma
near-root_wf
1. k : {2...}
2. p : {p:ℤ| (0 ≤ p) ∨ (↑isOdd(k))}
3. q : ℕ+
4. n : ℕ+
5. TERMOF{near-root-rational-ext:o, \\v:l} k p q n ∈ ∃r:ℤ × ℕ+ [let a,b = r
in (0 ≤ p
⇐⇒ 0 ≤ a)
∧ (|(r(a))/b^k - (r(p)/r(q))| < (r1/r(n)))]
⊢ near-root(k;p;q;n) ∈ {r:ℤ × ℕ+| let a,b = r in (0 ≤ p
⇐⇒ 0 ≤ a) ∧ (|(r(a))/b^k - (r(p)/r(q))| < (r1/r(n)))}
BY
{ (RW (AddrC [2] (TagC (mk_tag_term 5))) (-1) THEN Trivial) }
Latex:
Latex:
1. k : \{2...\}
2. p : \{p:\mBbbZ{}| (0 \mleq{} p) \mvee{} (\muparrow{}isOdd(k))\}
3. q : \mBbbN{}\msupplus{}
4. n : \mBbbN{}\msupplus{}
5. TERMOF\{near-root-rational-ext:o, \mbackslash{}\mbackslash{}v:l\} k p q n \mmember{} \mexists{}r:\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{} [let a,b = r
in (0 \mleq{} p \mLeftarrow{}{}\mRightarrow{} 0 \mleq{} a)
\mwedge{} (|(r(a))/b\^{}k
- (r(p)/r(q))| < (r1/r(n)))]
\mvdash{} near-root(k;p;q;n) \mmember{} \{r:\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}|
let a,b = r
in (0 \mleq{} p \mLeftarrow{}{}\mRightarrow{} 0 \mleq{} a) \mwedge{} (|(r(a))/b\^{}k - (r(p)/r(q))| < (r1/r(n)))\}
By
Latex:
(RW (AddrC [2] (TagC (mk\_tag\_term 5))) (-1) THEN Trivial)
Home
Index