Nuprl Lemma : near-root_wf
∀k:{2...}. ∀p:{p:ℤ| (0 ≤ p) ∨ (↑isOdd(k))} . ∀q,n:ℕ+.
  (near-root(k;p;q;n) ∈ {r:ℤ × ℕ+| let a,b = r in (0 ≤ p 
⇐⇒ 0 ≤ a) ∧ (|(r(a))/b^k - (r(p)/r(q))| < (r1/r(n)))} )
Proof
Definitions occuring in Statement : 
near-root: near-root(k;p;q;n)
, 
rdiv: (x/y)
, 
rless: x < y
, 
rabs: |x|
, 
rnexp: x^k1
, 
int-rdiv: (a)/k1
, 
rsub: x - y
, 
int-to-real: r(n)
, 
isOdd: isOdd(n)
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
spread: spread def, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
near-root-rational-ext, 
sq_exists: ∃x:A [B[x]]
, 
decidable: Dec(P)
, 
rneq: x ≠ y
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
guard: {T}
, 
nequal: a ≠ b ∈ T 
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
nat_plus: ℕ+
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
int_upper: {i...}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
set_wf, 
false_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
rless-int, 
rdiv_wf, 
int-to-real_wf, 
int_subtype_base, 
equal-wf-base, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
int_upper_properties, 
nat_plus_properties, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
int-rdiv_wf, 
upper_subtype_nat, 
rnexp_wf, 
rsub_wf, 
rabs_wf, 
rless_wf, 
iff_wf, 
sq_exists_wf, 
nat_plus_wf, 
isOdd_wf, 
assert_wf, 
le_wf, 
or_wf, 
all_wf, 
int_upper_wf, 
subtype_rel_self, 
near-root-rational-ext
Rules used in proof : 
dependent_set_memberEquality, 
unionElimination, 
inrFormation, 
baseClosed, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_pairFormation, 
independent_isectElimination, 
productElimination, 
productEquality, 
lambdaEquality, 
because_Cache, 
rename, 
setElimination, 
hypothesisEquality, 
intEquality, 
setEquality, 
natural_numberEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
introduction, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\{2...\}.  \mforall{}p:\{p:\mBbbZ{}|  (0  \mleq{}  p)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}q,n:\mBbbN{}\msupplus{}.
    (near-root(k;p;q;n)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
                                                  let  a,b  =  r 
                                                  in  (0  \mleq{}  p  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  a)  \mwedge{}  (|(r(a))/b\^{}k  -  (r(p)/r(q))|  <  (r1/r(n)))\}  )
Date html generated:
2018_05_22-PM-02_22_09
Last ObjectModification:
2018_05_21-AM-00_42_42
Theory : reals
Home
Index