Nuprl Lemma : near-root_wf

k:{2...}. ∀p:{p:ℤ(0 ≤ p) ∨ (↑isOdd(k))} . ∀q,n:ℕ+.
  (near-root(k;p;q;n) ∈ {r:ℤ × ℕ+let a,b in (0 ≤ ⇐⇒ 0 ≤ a) ∧ (|(r(a))/b^k (r(p)/r(q))| < (r1/r(n)))} )


Proof




Definitions occuring in Statement :  near-root: near-root(k;p;q;n) rdiv: (x/y) rless: x < y rabs: |x| rnexp: x^k1 int-rdiv: (a)/k1 rsub: y int-to-real: r(n) isOdd: isOdd(n) int_upper: {i...} nat_plus: + assert: b le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int:
Definitions unfolded in proof :  near-root-rational-ext sq_exists: x:A [B[x]] decidable: Dec(P) rneq: x ≠ y top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) guard: {T} nequal: a ≠ b ∈  so_apply: x[s] int_nzero: -o nat_plus: + not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a implies:  Q rev_implies:  Q iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2x.t[x] prop: or: P ∨ Q int_upper: {i...} uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x]
Lemmas referenced :  set_wf false_wf int_formula_prop_not_lemma intformnot_wf decidable__lt rless-int rdiv_wf int-to-real_wf int_subtype_base equal-wf-base int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat int_upper_properties nat_plus_properties nequal_wf less_than_wf subtype_rel_sets int-rdiv_wf upper_subtype_nat rnexp_wf rsub_wf rabs_wf rless_wf iff_wf sq_exists_wf nat_plus_wf isOdd_wf assert_wf le_wf or_wf all_wf int_upper_wf subtype_rel_self near-root-rational-ext
Rules used in proof :  dependent_set_memberEquality unionElimination inrFormation baseClosed voidEquality voidElimination isect_memberEquality dependent_functionElimination int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_pairFormation independent_isectElimination productElimination productEquality lambdaEquality because_Cache rename setElimination hypothesisEquality intEquality setEquality natural_numberEquality functionEquality isectElimination sqequalHypSubstitution introduction sqequalRule hypothesis extract_by_obid instantiate thin applyEquality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\{2...\}.  \mforall{}p:\{p:\mBbbZ{}|  (0  \mleq{}  p)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}q,n:\mBbbN{}\msupplus{}.
    (near-root(k;p;q;n)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
                                                  let  a,b  =  r 
                                                  in  (0  \mleq{}  p  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  a)  \mwedge{}  (|(r(a))/b\^{}k  -  (r(p)/r(q))|  <  (r1/r(n)))\}  )



Date html generated: 2018_05_22-PM-02_22_09
Last ObjectModification: 2018_05_21-AM-00_42_42

Theory : reals


Home Index