Nuprl Lemma : near-root-rational-ext
∀k:{2...}. ∀p:{p:ℤ| (0 ≤ p) ∨ (↑isOdd(k))} . ∀q,n:ℕ+.
  (∃r:ℤ × ℕ+ [let a,b = r 
              in (0 ≤ p ⇐⇒ 0 ≤ a) ∧ (|(r(a))/b^k - (r(p)/r(q))| < (r1/r(n)))])
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rless: x < y, 
rabs: |x|, 
rnexp: x^k1, 
int-rdiv: (a)/k1, 
rsub: x - y, 
int-to-real: r(n), 
isOdd: isOdd(n), 
int_upper: {i...}, 
nat_plus: ℕ+, 
assert: ↑b, 
le: A ≤ B, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
spread: spread def, 
product: x:A × B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T, 
eq_int: (i =z j), 
btrue: tt, 
it: ⋅, 
bfalse: ff, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
lt_int: i <z j, 
near-root: near-root(k;p;q;n), 
near-root-rational, 
iroot-lemma2, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
or: P ∨ Q, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
near-root-rational, 
lifting-strict-decide, 
istype-void, 
has-value_wf_base, 
istype-base, 
is-exception_wf, 
istype-universe, 
lifting-strict-int_eq, 
strict4-decide, 
lifting-strict-callbyvalue, 
strict4-spread, 
lifting-strict-less, 
iroot-lemma2
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
universeIsType, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueExceptionCases, 
inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation_alt, 
because_Cache
Latex:
\mforall{}k:\{2...\}.  \mforall{}p:\{p:\mBbbZ{}|  (0  \mleq{}  p)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}q,n:\mBbbN{}\msupplus{}.
    (\mexists{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}  [let  a,b  =  r 
                            in  (0  \mleq{}  p  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  a)  \mwedge{}  (|(r(a))/b\^{}k  -  (r(p)/r(q))|  <  (r1/r(n)))])
Date html generated:
2019_10_30-AM-07_53_39
Last ObjectModification:
2019_04_02-AM-10_58_22
Theory : reals
Home
Index