Nuprl Lemma : near-root-rational-ext

k:{2...}. ∀p:{p:ℤ(0 ≤ p) ∨ (↑isOdd(k))} . ∀q,n:ℕ+.
  (∃r:ℤ × ℕ+ [let a,b 
              in (0 ≤ ⇐⇒ 0 ≤ a) ∧ (|(r(a))/b^k (r(p)/r(q))| < (r1/r(n)))])


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y rabs: |x| rnexp: x^k1 int-rdiv: (a)/k1 rsub: y int-to-real: r(n) isOdd: isOdd(n) int_upper: {i...} nat_plus: + assert: b le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int:
Definitions unfolded in proof :  member: t ∈ T eq_int: (i =z j) btrue: tt it: bfalse: ff band: p ∧b q ifthenelse: if then else fi  subtract: m lt_int: i <j near-root: near-root(k;p;q;n) near-root-rational iroot-lemma2 uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  near-root-rational lifting-strict-decide istype-void has-value_wf_base istype-base is-exception_wf istype-universe lifting-strict-int_eq strict4-decide lifting-strict-callbyvalue strict4-spread lifting-strict-less iroot-lemma2
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination independent_pairFormation lambdaFormation_alt callbyvalueCallbyvalue callbyvalueReduce universeIsType baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases inrFormation_alt imageMemberEquality imageElimination exceptionSqequal inlFormation_alt because_Cache

Latex:
\mforall{}k:\{2...\}.  \mforall{}p:\{p:\mBbbZ{}|  (0  \mleq{}  p)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}q,n:\mBbbN{}\msupplus{}.
    (\mexists{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}  [let  a,b  =  r 
                            in  (0  \mleq{}  p  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  a)  \mwedge{}  (|(r(a))/b\^{}k  -  (r(p)/r(q))|  <  (r1/r(n)))])



Date html generated: 2019_10_30-AM-07_53_39
Last ObjectModification: 2019_04_02-AM-10_58_22

Theory : reals


Home Index