Nuprl Lemma : lifting-strict-less
∀[F:Base]. ∀[p,q,r:Top].
  ∀[a,b,c,d:Top].  (F[if (a) < (b)  then c  else d;p;q;r] ~ if (a) < (b)  then F[c;p;q;r]  else F[d;p;q;r]) 
  supposing strict4(λx,y,z,w. F[x;y;z;w])
Proof
Definitions occuring in Statement : 
strict4: strict4(F), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2;s3;s4], 
less: if (a) < (b)  then c  else d, 
lambda: λx.A[x], 
base: Base, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
so_apply: x[s1;s2;s3;s4]
Lemmas referenced : 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-void, 
has-value_wf_base, 
is-exception_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
strict4_wf, 
top_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
hypothesis, 
dependent_functionElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_functionElimination, 
callbyvalueLess, 
extract_by_obid, 
isectElimination, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
lessCases, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
independent_pairFormation, 
voidElimination, 
natural_numberEquality, 
imageMemberEquality, 
imageElimination, 
sqleReflexivity, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType2, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :equalityIsType1, 
axiomSqleEquality, 
lessExceptionCases, 
exceptionSqequal, 
exceptionLess
Latex:
\mforall{}[F:Base].  \mforall{}[p,q,r:Top].
    \mforall{}[a,b,c,d:Top].
        (F[if  (a)  <  (b)    then  c    else  d;p;q;r]  \msim{}  if  (a)  <  (b)    then  F[c;p;q;r]    else  F[d;p;q;r]) 
    supposing  strict4(\mlambda{}x,y,z,w.  F[x;y;z;w])
Date html generated:
2019_06_20-AM-11_27_10
Last ObjectModification:
2018_09_28-PM-03_23_48
Theory : computation
Home
Index