Step
*
1
1
1
2
1
2
of Lemma
partial-int-not-discrete
1. ∀k:ℕ. (λx.(fix((λf,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) k) ∈ ℝ ⟶ partial(ℤ))
2. λx.(fix((λf,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) 0) ∈ ℝ ⟶ partial(ℤ)
3. x : ℝ
4. y : ℝ
5. x = y
6. v : ℝ ⟶ partial(ℤ)
7. (λx.(fix((λf,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) 0)) = v ∈ (ℝ ⟶ partial(ℤ))
8. (∀x:ℝ. ((v x)↓
⇐⇒ r0 < |x|)) ∧ (∀x:ℝ. ((v x)↓
⇒ ((v x) = 1 ∈ ℤ)))
9. uiff((v x)↓;(v y)↓)
⊢ (v x)↓
⇒ ((v x) = (v y) ∈ ℤ)
BY
{ (At ⌜Type⌝ (D 0)⋅ THENA Auto) }
1
1. ∀k:ℕ. (λx.(fix((λf,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) k) ∈ ℝ ⟶ partial(ℤ))
2. λx.(fix((λf,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) 0) ∈ ℝ ⟶ partial(ℤ)
3. x : ℝ
4. y : ℝ
5. x = y
6. v : ℝ ⟶ partial(ℤ)
7. (λx.(fix((λf,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) 0)) = v ∈ (ℝ ⟶ partial(ℤ))
8. (∀x:ℝ. ((v x)↓
⇐⇒ r0 < |x|)) ∧ (∀x:ℝ. ((v x)↓
⇒ ((v x) = 1 ∈ ℤ)))
9. uiff((v x)↓;(v y)↓)
10. (v x)↓
⊢ (v x) = (v y) ∈ ℤ
Latex:
Latex:
1. \mforall{}k:\mBbbN{}. (\mlambda{}x.(fix((\mlambda{}f,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) k) \mmember{} \mBbbR{} {}\mrightarrow{} partial(\mBbbZ{}))
2. \mlambda{}x.(fix((\mlambda{}f,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) 0) \mmember{} \mBbbR{} {}\mrightarrow{} partial(\mBbbZ{})
3. x : \mBbbR{}
4. y : \mBbbR{}
5. x = y
6. v : \mBbbR{} {}\mrightarrow{} partial(\mBbbZ{})
7. (\mlambda{}x.(fix((\mlambda{}f,n. if 4 <z |x (n + 1)| then 1 else f (n + 1) fi )) 0)) = v
8. (\mforall{}x:\mBbbR{}. ((v x)\mdownarrow{} \mLeftarrow{}{}\mRightarrow{} r0 < |x|)) \mwedge{} (\mforall{}x:\mBbbR{}. ((v x)\mdownarrow{} {}\mRightarrow{} ((v x) = 1)))
9. uiff((v x)\mdownarrow{};(v y)\mdownarrow{})
\mvdash{} (v x)\mdownarrow{} {}\mRightarrow{} ((v x) = (v y))
By
Latex:
(At \mkleeneopen{}Type\mkleeneclose{} (D 0)\mcdot{} THENA Auto)
Home
Index