Step
*
of Lemma
partition-endpoints
∀[I:Interval]
∀[p:partition(I)]. ∀[x:ℝ]. full-partition(I;p)[0]≤x≤full-partition(I;p)[||full-partition(I;p)|| - 1] supposing x ∈ I
supposing icompact(I)
BY
{ (BasicUniformUnivCD Auto
THEN RepUR ``full-partition`` 0
THEN (RWO "length-append" 0 THENA Auto)
THEN Reduce 0
THEN (RWO "select_cons_tl" 0 THENA Auto')
THEN (RWO "select_append_back" 0 THENA Auto')
THEN RW IntNormC 0
THEN Auto
THEN (Reduce 0
THEN Auto
THEN Unfold `rbetween` 0
THEN (Unhide THEN Auto THEN OnMaybeHyp 5 (\h. (FLemma `i-member-compact` [h]⋅ THEN Complete (Auto))))⋅)⋅) }
Latex:
Latex:
\mforall{}[I:Interval]
\mforall{}[p:partition(I)]. \mforall{}[x:\mBbbR{}].
full-partition(I;p)[0]\mleq{}x\mleq{}full-partition(I;p)[||full-partition(I;p)|| - 1] supposing x \mmember{} I
supposing icompact(I)
By
Latex:
(BasicUniformUnivCD Auto
THEN RepUR ``full-partition`` 0
THEN (RWO "length-append" 0 THENA Auto)
THEN Reduce 0
THEN (RWO "select\_cons\_tl" 0 THENA Auto')
THEN (RWO "select\_append\_back" 0 THENA Auto')
THEN RW IntNormC 0
THEN Auto
THEN (Reduce 0
THEN Auto
THEN Unfold `rbetween` 0
THEN (Unhide
THEN Auto
THEN OnMaybeHyp 5 (\mbackslash{}h. (FLemma `i-member-compact` [h]\mcdot{} THEN Complete (Auto))))\mcdot{})\mcdot{})
Home
Index