Nuprl Lemma : partition-endpoints
∀[I:Interval]
  ∀[p:partition(I)]. ∀[x:ℝ].  full-partition(I;p)[0]≤x≤full-partition(I;p)[||full-partition(I;p)|| - 1] supposing x ∈ I 
  supposing icompact(I)
Proof
Definitions occuring in Statement : 
full-partition: full-partition(I;p)
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
i-member: r ∈ I
, 
interval: Interval
, 
rbetween: x≤y≤z
, 
real: ℝ
, 
select: L[n]
, 
length: ||as||
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
full-partition: full-partition(I;p)
, 
select: L[n]
, 
cons: [a / b]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
partition: partition(I)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
rbetween: x≤y≤z
, 
cand: A c∧ B
, 
icompact: icompact(I)
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
Lemmas referenced : 
sq_stable__rleq, 
sq_stable__and, 
zero-mul, 
zero-add, 
add-mul-special, 
add-swap, 
minus-one-mul, 
add-associates, 
i-member-compact, 
nat_plus_wf, 
rsub_wf, 
less_than'_wf, 
rleq_wf, 
interval_wf, 
icompact_wf, 
partition_wf, 
i-member_wf, 
lelt_wf, 
select_append_back, 
decidable__le, 
length-singleton, 
iff_weakening_equal, 
top_wf, 
subtype_rel_list, 
length_append, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
non_neg_length, 
length_wf, 
subtract_wf, 
nil_wf, 
right-endpoint_wf, 
cons_wf, 
append_wf, 
select_cons_tl, 
left-endpoint_wf, 
real_wf, 
true_wf, 
squash_wf, 
rbetween_wf, 
length_of_nil_lemma, 
length-append, 
length_of_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
because_Cache, 
setElimination, 
rename, 
addEquality, 
natural_numberEquality, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
universeEquality, 
dependent_set_memberEquality, 
multiplyEquality, 
minusEquality, 
lambdaFormation, 
introduction, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)].  \mforall{}[x:\mBbbR{}].
        full-partition(I;p)[0]\mleq{}x\mleq{}full-partition(I;p)[||full-partition(I;p)||  -  1]  supposing  x  \mmember{}  I 
    supposing  icompact(I)
Date html generated:
2016_05_18-AM-08_57_33
Last ObjectModification:
2016_01_17-AM-02_31_16
Theory : reals
Home
Index