Nuprl Lemma : partition-endpoints

[I:Interval]
  ∀[p:partition(I)]. ∀[x:ℝ].  full-partition(I;p)[0]≤x≤full-partition(I;p)[||full-partition(I;p)|| 1] supposing x ∈ 
  supposing icompact(I)


Proof




Definitions occuring in Statement :  full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) i-member: r ∈ I interval: Interval rbetween: x≤y≤z real: select: L[n] length: ||as|| uimplies: supposing a uall: [x:A]. B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a full-partition: full-partition(I;p) select: L[n] cons: [a b] all: x:A. B[x] member: t ∈ T top: Top squash: T prop: partition: partition(I) ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k rbetween: x≤y≤z cand: c∧ B icompact: icompact(I) subtract: m sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x)
Lemmas referenced :  sq_stable__rleq sq_stable__and zero-mul zero-add add-mul-special add-swap minus-one-mul add-associates i-member-compact nat_plus_wf rsub_wf less_than'_wf rleq_wf interval_wf icompact_wf partition_wf i-member_wf lelt_wf select_append_back decidable__le length-singleton iff_weakening_equal top_wf subtype_rel_list length_append le_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermSubtract_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt non_neg_length length_wf subtract_wf nil_wf right-endpoint_wf cons_wf append_wf select_cons_tl left-endpoint_wf real_wf true_wf squash_wf rbetween_wf length_of_nil_lemma length-append length_of_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_isectElimination because_Cache setElimination rename addEquality natural_numberEquality unionElimination productElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll imageMemberEquality baseClosed independent_functionElimination universeEquality dependent_set_memberEquality multiplyEquality minusEquality lambdaFormation introduction independent_pairEquality axiomEquality

Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)].  \mforall{}[x:\mBbbR{}].
        full-partition(I;p)[0]\mleq{}x\mleq{}full-partition(I;p)[||full-partition(I;p)||  -  1]  supposing  x  \mmember{}  I 
    supposing  icompact(I)



Date html generated: 2016_05_18-AM-08_57_33
Last ObjectModification: 2016_01_17-AM-02_31_16

Theory : reals


Home Index