Step
*
2
of Lemma
proper-maps-compact
1. I : Interval
2. J : Interval
3. f : I ⟶ℝ
4. iproper(J)
5. ∀n:{n:ℕ+| icompact(i-approx(I;n))} 
     ∃m:{m:ℕ+| icompact(i-approx(J;m))} . ∀x:{x:ℝ| x ∈ i-approx(I;n)} . (f[x] ∈ i-approx(J;m))
6. n : {n:ℕ+| icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))} 
7. m : {m:ℕ+| icompact(i-approx(J;m))} 
8. ∀x:{x:ℝ| x ∈ i-approx(I;n)} . (f[x] ∈ i-approx(J;m))
9. x : {x:ℝ| x ∈ i-approx(I;n)} 
⊢ f[x] ∈ i-approx(J;m + 1)
BY
{ ((Assert f[x] ∈ i-approx(J;m) BY Auto) THEN InstLemma `i-approx-monotonic` [⌜J⌝;⌜m⌝;⌜m + 1⌝]⋅ THEN Auto) }
Latex:
Latex:
1.  I  :  Interval
2.  J  :  Interval
3.  f  :  I  {}\mrightarrow{}\mBbbR{}
4.  iproper(J)
5.  \mforall{}n:\{n:\mBbbN{}\msupplus{}|  icompact(i-approx(I;n))\} 
          \mexists{}m:\{m:\mBbbN{}\msupplus{}|  icompact(i-approx(J;m))\}  .  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  i-approx(I;n)\}  .  (f[x]  \mmember{}  i-approx(J;m))
6.  n  :  \{n:\mBbbN{}\msupplus{}|  icompact(i-approx(I;n))  \mwedge{}  iproper(i-approx(I;n))\} 
7.  m  :  \{m:\mBbbN{}\msupplus{}|  icompact(i-approx(J;m))\} 
8.  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  i-approx(I;n)\}  .  (f[x]  \mmember{}  i-approx(J;m))
9.  x  :  \{x:\mBbbR{}|  x  \mmember{}  i-approx(I;n)\} 
\mvdash{}  f[x]  \mmember{}  i-approx(J;m  +  1)
By
Latex:
((Assert  f[x]  \mmember{}  i-approx(J;m)  BY
                Auto)
  THEN  InstLemma  `i-approx-monotonic`  [\mkleeneopen{}J\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{};\mkleeneopen{}m  +  1\mkleeneclose{}]\mcdot{}
  THEN  Auto)
Home
Index