Step
*
1
1
1
of Lemma
pseudo-positive-is-positive-proof2
1. ∀a:ℕ*. ((∀c:ℕ*. ((¬¬(∃n:ℕ. (¬((a n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ)))))) 
⇒ (∃n:ℕ. 0 < a n))
2. x : ℝ
3. pseudo-positive(x)
4. d : ∀n:ℕ. ((|x| < (r1)/2^n) ∨ ((r1)/2^(n + 1) < |x|))
⊢ r0 < x
BY
{ (InstHyp [⌜nat-star-retract(λn.if isl(d n) then 0 else 1 fi )⌝] 1⋅ THENA Auto) }
1
1. ∀a:ℕ*. ((∀c:ℕ*. ((¬¬(∃n:ℕ. (¬((a n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ)))))) 
⇒ (∃n:ℕ. 0 < a n))
2. x : ℝ
3. pseudo-positive(x)
4. d : ∀n:ℕ. ((|x| < (r1)/2^n) ∨ ((r1)/2^(n + 1) < |x|))
5. c : ℕ*
⊢ (¬¬(∃n:ℕ. (¬((nat-star-retract(λn.if isl(d n) then 0 else 1 fi ) n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ))))
2
1. ∀a:ℕ*. ((∀c:ℕ*. ((¬¬(∃n:ℕ. (¬((a n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ)))))) 
⇒ (∃n:ℕ. 0 < a n))
2. x : ℝ
3. pseudo-positive(x)
4. d : ∀n:ℕ. ((|x| < (r1)/2^n) ∨ ((r1)/2^(n + 1) < |x|))
5. ∃n:ℕ. 0 < nat-star-retract(λn.if isl(d n) then 0 else 1 fi ) n
⊢ r0 < x
Latex:
Latex:
1.  \mforall{}a:\mBbbN{}*
          ((\mforall{}c:\mBbbN{}*.  ((\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (\mneg{}((a  n)  =  (c  n)))))  \mvee{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (\mneg{}(0  =  (c  n)))))))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  0  <  a  n))
2.  x  :  \mBbbR{}
3.  pseudo-positive(x)
4.  d  :  \mforall{}n:\mBbbN{}.  ((|x|  <  (r1)/2\^{}n)  \mvee{}  ((r1)/2\^{}(n  +  1)  <  |x|))
\mvdash{}  r0  <  x
By
Latex:
(InstHyp  [\mkleeneopen{}nat-star-retract(\mlambda{}n.if  isl(d  n)  then  0  else  1  fi  )\mkleeneclose{}]  1\mcdot{}  THENA  Auto)
Home
Index