Step
*
1
1
1
1
of Lemma
pseudo-positive-is-positive
1. x : ℝ
2. c : ℕ ⟶ ℕ
3. ∀f:ℕ+ ⟶ ℤ. 3-regular-seq(regularize(3;f))
4. (λi.0) = c ∈ (ℕ ⟶ ℕ)
5. r0 < accelerate(3;regularize(3;c))
⊢ False
BY
{ (Assert c = r0 ∈ (ℕ ⟶ ℕ) BY
((Assert (λi.0) = r0 ∈ (ℕ ⟶ ℕ) BY (RepUR ``int-to-real`` 0 THEN FunExt THEN Reduce 0 THEN Auto)) THEN Auto)) }
1
1. x : ℝ
2. c : ℕ ⟶ ℕ
3. ∀f:ℕ+ ⟶ ℤ. 3-regular-seq(regularize(3;f))
4. (λi.0) = c ∈ (ℕ ⟶ ℕ)
5. r0 < accelerate(3;regularize(3;c))
6. c = r0 ∈ (ℕ ⟶ ℕ)
⊢ False
Latex:
Latex:
1. x : \mBbbR{}
2. c : \mBbbN{} {}\mrightarrow{} \mBbbN{}
3. \mforall{}f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}. 3-regular-seq(regularize(3;f))
4. (\mlambda{}i.0) = c
5. r0 < accelerate(3;regularize(3;c))
\mvdash{} False
By
Latex:
(Assert c = r0 BY
((Assert (\mlambda{}i.0) = r0 BY
(RepUR ``int-to-real`` 0 THEN FunExt THEN Reduce 0 THEN Auto))
THEN Auto
))
Home
Index