Nuprl Lemma : pseudo-positive-is-positive
∀x:ℝ. r0 < x supposing pseudo-positive(x)
Proof
Definitions occuring in Statement : 
pseudo-positive: pseudo-positive(x)
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
true: True
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
pseudo-positive: pseudo-positive(x)
, 
int-to-real: r(n)
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
label: ...$L... t
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
regular-int-seq: k-regular-seq(f)
, 
nequal: a ≠ b ∈ T 
, 
sq_stable: SqStable(P)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rabs: |x|
, 
absval: |i|
, 
subtract: n - m
, 
bdd-diff: bdd-diff(f;g)
, 
gt: i > j
Lemmas referenced : 
rlessw_wf, 
int-to-real_wf, 
rless_wf, 
pseudo-positive_wf, 
real_wf, 
weak-Markov-principle-alt, 
false_wf, 
le_wf, 
nat_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
nat_properties, 
nequal-le-implies, 
zero-add, 
lt_int_wf, 
rabs_wf, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel, 
less_than_wf, 
assert_of_lt_int, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
regularize-k-regular, 
accelerate_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
equal-wf-base-T, 
not_wf, 
nat_plus_properties, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
subtype_rel_dep_function, 
nat_plus_subtype_nat, 
squash_wf, 
true_wf, 
regularize_wf, 
iff_weakening_equal, 
set_wf, 
regularize-real, 
subtype_rel_sets, 
real-regular, 
accelerate-req, 
itermAdd_wf, 
int_term_value_add_lemma, 
rless_functionality, 
req_weakening, 
req-iff-bdd-diff, 
bdd-diff_transitivity, 
accelerate-bdd-diff, 
eq_int_eq_false, 
equal-wf-base, 
int_subtype_base, 
bfalse_wf, 
sq_stable__regular-int-seq, 
absval_wf, 
subtract_wf, 
multiply-is-int-iff, 
int-triangle-inequality, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_functionality, 
le_weakening, 
absval_pos, 
mul_bounds_1a, 
mul_preserves_le, 
absval-diff-symmetry, 
mul-distributes, 
minus-one-mul, 
mul-commutes, 
mul-associates, 
zero-mul, 
regularize-regular, 
bdd-diff_wf, 
all_wf, 
add-mul-special, 
zero-le-nat, 
itermMinus_wf, 
int_term_value_minus_lemma, 
absval-minus, 
sq_stable__less_than, 
rabs-rless-iff, 
assert_wf, 
bnot_wf, 
equal-wf-T-base, 
not-equal-2, 
intformor_wf, 
int_formula_prop_or_lemma, 
add-associates, 
add-zero, 
condition-implies-le, 
minus-add, 
minus-zero, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
absval_lbound, 
rless_transitivity2, 
rleq_weakening_rless, 
rless_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
dependent_set_memberEquality, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
independent_pairFormation, 
setElimination, 
rename, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
hypothesis_subsumption, 
applyEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
imageElimination, 
approximateComputation, 
int_eqEquality, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
functionExtensionality, 
inlFormation, 
inrFormation, 
multiplyEquality, 
universeEquality, 
setEquality, 
baseApply, 
closedConclusion, 
addEquality, 
minusEquality, 
applyLambdaEquality, 
impliesFunctionality, 
dependent_set_memberFormation
Latex:
\mforall{}x:\mBbbR{}.  r0  <  x  supposing  pseudo-positive(x)
Date html generated:
2017_10_03-AM-09_09_52
Last ObjectModification:
2017_09_20-PM-06_04_48
Theory : reals
Home
Index