Nuprl Lemma : regularize_wf
∀[k:ℕ+]. ∀[f:ℕ+ ⟶ ℤ].  (regularize(k;f) ∈ ℕ+ ⟶ ℤ)
Proof
Definitions occuring in Statement : 
regularize: regularize(k;f), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
regularize: regularize(k;f), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
decidable: Dec(P), 
not: ¬A, 
regular-upto: regular-upto(k;n;f), 
top: Top, 
true: True, 
le: A ≤ B, 
less_than': less_than'(a;b), 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
lelt: i ≤ j < k, 
subtract: n - m, 
rev_uimplies: rev_uimplies(P;Q), 
ge: i ≥ j , 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
absval: |i|, 
has-value: (a)↓, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
regular-upto_wf, 
nat_plus_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
nat_plus_subtype_nat, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
not_wf, 
assert_wf, 
assert_of_bnot, 
bnot_wf, 
exists_wf, 
nat_wf, 
mu-property, 
mu_wf, 
uall_wf, 
isect_wf, 
less_than_wf, 
decidable__equal_int, 
int_subtype_base, 
bdd_all_zero_lemma, 
assert-bdd-all, 
false_wf, 
le_wf, 
le_int_wf, 
absval_wf, 
subtract_wf, 
decidable__lt, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
int_seg_wf, 
bdd-all_wf, 
all_wf, 
assert_of_le_int, 
int_seg_properties, 
nat_properties, 
nat_plus_properties, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_cases, 
int_seg_subtype, 
intformand_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
decidable__le, 
value-type-has-value, 
int-value-type, 
set-value-type, 
seq-min-upper_wf, 
mul_nzero, 
subtype_rel_sets, 
nequal_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
functionExtensionality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
intEquality, 
addLevel, 
existsFunctionality, 
productEquality, 
setElimination, 
rename, 
natural_numberEquality, 
isect_memberEquality, 
voidEquality, 
allFunctionality, 
dependent_set_memberEquality, 
independent_pairFormation, 
multiplyEquality, 
addEquality, 
minusEquality, 
levelHypothesis, 
allLevelFunctionality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
approximateComputation, 
int_eqEquality, 
hypothesis_subsumption, 
callbyvalueReduce, 
divideEquality, 
setEquality
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (regularize(k;f)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})
Date html generated:
2017_10_03-AM-09_07_30
Last ObjectModification:
2017_09_11-PM-01_40_53
Theory : reals
Home
Index