Nuprl Lemma : regularize_wf

[k:ℕ+]. ∀[f:ℕ+ ⟶ ℤ].  (regularize(k;f) ∈ ℕ+ ⟶ ℤ)


Proof




Definitions occuring in Statement :  regularize: regularize(k;f) nat_plus: + uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] regularize: regularize(k;f) member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False so_lambda: λ2x.t[x] so_apply: x[s] nat: decidable: Dec(P) not: ¬A regular-upto: regular-upto(k;n;f) top: Top true: True le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} nat_plus: + iff: ⇐⇒ Q rev_implies:  Q lelt: i ≤ j < k subtract: m rev_uimplies: rev_uimplies(P;Q) ge: i ≥  less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) absval: |i| has-value: (a)↓ int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  regular-upto_wf nat_plus_wf bool_wf eqtt_to_assert eqff_to_assert nat_plus_subtype_nat equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not_wf assert_wf assert_of_bnot bnot_wf exists_wf nat_wf mu-property mu_wf uall_wf isect_wf less_than_wf decidable__equal_int int_subtype_base bdd_all_zero_lemma assert-bdd-all false_wf le_wf le_int_wf absval_wf subtract_wf decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel int_seg_wf bdd-all_wf all_wf assert_of_le_int int_seg_properties nat_properties nat_plus_properties full-omega-unsat intformnot_wf intformeq_wf itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf int_seg_cases int_seg_subtype intformand_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma decidable__le value-type-has-value int-value-type set-value-type seq-min-upper_wf mul_nzero subtype_rel_sets nequal_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis sqequalRule functionExtensionality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination functionEquality intEquality addLevel existsFunctionality productEquality setElimination rename natural_numberEquality isect_memberEquality voidEquality allFunctionality dependent_set_memberEquality independent_pairFormation multiplyEquality addEquality minusEquality levelHypothesis allLevelFunctionality applyLambdaEquality imageMemberEquality baseClosed approximateComputation int_eqEquality hypothesis_subsumption callbyvalueReduce divideEquality setEquality

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (regularize(k;f)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})



Date html generated: 2017_10_03-AM-09_07_30
Last ObjectModification: 2017_09_11-PM-01_40_53

Theory : reals


Home Index