Nuprl Lemma : regular-upto_wf

[k,n:ℕ]. ∀[f:ℕ+ ⟶ ℤ].  (regular-upto(k;n;f) ∈ 𝔹)


Proof




Definitions occuring in Statement :  regular-upto: regular-upto(k;n;f) nat_plus: + nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T regular-upto: regular-upto(k;n;f) so_lambda: λ2x.t[x] int_seg: {i..j-} nat_plus: + nat: le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a lelt: i ≤ j < k subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True so_apply: x[s]
Lemmas referenced :  bdd-all_wf le_int_wf absval_wf subtract_wf nat_plus_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality because_Cache multiplyEquality addEquality setElimination rename hypothesis natural_numberEquality applyEquality functionExtensionality dependent_set_memberEquality productElimination dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination isect_memberEquality voidEquality intEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (regular-upto(k;n;f)  \mmember{}  \mBbbB{})



Date html generated: 2017_10_03-AM-08_42_28
Last ObjectModification: 2017_09_06-PM-04_02_15

Theory : reals


Home Index