Nuprl Lemma : rabs-rless-iff

x,z:ℝ.  (|x| < ⇐⇒ (-(z) < x) ∧ (x < z))


Proof




Definitions occuring in Statement :  rless: x < y rabs: |x| rminus: -(x) real: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: and: P ∧ Q rsub: y iff: ⇐⇒ Q implies:  Q uimplies: supposing a rev_implies:  Q
Lemmas referenced :  rabs-difference-bound-iff int-to-real_wf real_wf rabs_wf radd_wf rminus_wf rless_wf rless_functionality rabs_functionality radd_functionality rminus-zero req_weakening radd_comm radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination natural_numberEquality hypothesis because_Cache productEquality sqequalRule productElimination independent_pairFormation independent_functionElimination independent_isectElimination promote_hyp

Latex:
\mforall{}x,z:\mBbbR{}.    (|x|  <  z  \mLeftarrow{}{}\mRightarrow{}  (-(z)  <  x)  \mwedge{}  (x  <  z))



Date html generated: 2016_10_26-AM-09_10_23
Last ObjectModification: 2016_09_01-PM-01_37_12

Theory : reals


Home Index