Nuprl Lemma : pseudo-positive_wf
∀[x:ℝ]. (pseudo-positive(x) ∈ ℙ)
Proof
Definitions occuring in Statement : 
pseudo-positive: pseudo-positive(x)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pseudo-positive: pseudo-positive(x)
Lemmas referenced : 
not_wf, 
rless_wf, 
int-to-real_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbR{}].  (pseudo-positive(x)  \mmember{}  \mBbbP{})
Date html generated:
2017_01_09-AM-08_56_33
Last ObjectModification:
2016_11_16-PM-06_19_09
Theory : reals
Home
Index