Nuprl Lemma : weak-Markov-principle-alt

a,b:ℕ ⟶ ℕ.  ((∀c:ℕ ⟶ ℕ((¬(a c ∈ (ℕ ⟶ ℕ))) ∨ (b c ∈ (ℕ ⟶ ℕ)))))  (∃n:ℕ((a n) (b n) ∈ ℤ))))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A cand: c∧ B uimplies: supposing a sq_type: SQType(T) guard: {T} true: True subtype_rel: A ⊆B pi1: fst(t) decidable: Dec(P) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top squash: T int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  all_wf nat_wf or_wf not_wf equal_wf false_wf le_wf equal-wf-base equal-wf-T-base subtype_base_sq int_subtype_base strong-continuity2-implies-weak exists_wf decidable__equal_int quotient-implies-squash int_seg_wf subtype_rel_function int_seg_subtype_nat subtype_rel_self equal-wf-base-T member_wf nat_properties full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__exists_int_seg decidable__not decidable__equal_nat int_seg_properties decidable__le intformle_wf int_formula_prop_le_lemma mu-dec-property unit_wf2 it_wf mu-dec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis sqequalRule lambdaEquality hypothesisEquality dependent_functionElimination unionElimination dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation intEquality baseClosed because_Cache independent_functionElimination voidElimination productEquality setElimination rename addLevel instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry levelHypothesis promote_hyp productElimination applyEquality functionExtensionality applyLambdaEquality approximateComputation int_eqEquality isect_memberEquality voidEquality imageElimination imageMemberEquality

Latex:
\mforall{}a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}c:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((\mneg{}(a  =  c))  \mvee{}  (\mneg{}(b  =  c))))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  (\mneg{}((a  n)  =  (b  n)))))



Date html generated: 2018_05_21-PM-01_18_17
Last ObjectModification: 2018_05_19-AM-06_37_15

Theory : continuity


Home Index