Nuprl Lemma : quotient-implies-squash

[P,Q:ℙ].  ((P  Q)  {⇃(P)  (↓Q)})


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] uall: [x:A]. B[x] prop: guard: {T} squash: T implies:  Q true: True
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: quotient: x,y:A//B[x; y] and: P ∧ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  equiv_rel_true quotient_wf true_wf equal-wf-base squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation rename pointwiseFunctionalityForEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis pertypeElimination productElimination independent_functionElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productEquality because_Cache imageElimination cumulativity lambdaEquality independent_isectElimination functionEquality dependent_functionElimination universeEquality isect_memberEquality

Latex:
\mforall{}[P,Q:\mBbbP{}].    ((P  {}\mRightarrow{}  Q)  {}\mRightarrow{}  \{\00D9(P)  {}\mRightarrow{}  (\mdownarrow{}Q)\})



Date html generated: 2016_05_19-AM-11_56_56
Last ObjectModification: 2016_05_18-AM-08_21_36

Theory : quot_1


Home Index