Nuprl Lemma : mu-dec-property
∀[A:Type]. ∀[P:A ⟶ ℕ ⟶ ℙ].
  ∀d:a:A ⟶ k:ℕ ⟶ Dec(P[a;k]). ∀a:A.  ((↓∃k:ℕ. P[a;k]) ⇒ {P[a;mu-dec(d;a)] ∧ (∀i:ℕmu-dec(d;a). (¬P[a;i]))})
Proof
Definitions occuring in Statement : 
mu-dec: mu-dec(d;a), 
int_seg: {i..j-}, 
nat: ℕ, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
squash: ↓T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
guard: {T}, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
cand: A c∧ B, 
mu-dec: mu-dec(d;a), 
decidable: Dec(P), 
or: P ∨ Q, 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
bfalse: ff, 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
sq_stable: SqStable(P)
Lemmas referenced : 
true_wf, 
sq_stable__not, 
sq_stable__all, 
sq_stable_from_decidable, 
sq_stable__and, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
le_wf, 
nat_properties, 
int_seg_properties, 
assert_wf, 
equal_wf, 
isl_wf, 
mu-property, 
false_wf, 
int_seg_subtype_nat, 
not_wf, 
int_seg_wf, 
all_wf, 
decidable_wf, 
nat_wf, 
exists_wf, 
squash_wf, 
mu-dec_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_isectElimination, 
introduction, 
applyEquality, 
imageElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
because_Cache, 
independent_pairFormation, 
productElimination, 
dependent_pairFormation, 
unionEquality, 
unionElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
setEquality, 
intEquality, 
int_eqEquality, 
voidEquality, 
computeAll, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}d:a:A  {}\mrightarrow{}  k:\mBbbN{}  {}\mrightarrow{}  Dec(P[a;k]).  \mforall{}a:A.
        ((\mdownarrow{}\mexists{}k:\mBbbN{}.  P[a;k])  {}\mRightarrow{}  \{P[a;mu-dec(d;a)]  \mwedge{}  (\mforall{}i:\mBbbN{}mu-dec(d;a).  (\mneg{}P[a;i]))\})
Date html generated:
2016_05_14-AM-07_30_20
Last ObjectModification:
2016_01_14-PM-09_58_47
Theory : int_2
Home
Index