Step
*
of Lemma
weak-Markov-principle-alt
∀a,b:ℕ ⟶ ℕ. ((∀c:ℕ ⟶ ℕ. ((¬(a = c ∈ (ℕ ⟶ ℕ))) ∨ (¬(b = c ∈ (ℕ ⟶ ℕ)))))
⇒ (∃n:ℕ. (¬((a n) = (b n) ∈ ℤ))))
BY
{ xxx(Auto
THEN Assert ⌜∀c:ℕ ⟶ ℕ
∃i:ℕ. (((i = 0 ∈ ℤ)
⇒ (¬(a = c ∈ (ℕ ⟶ ℕ)))) ∧ ((¬(i = 0 ∈ ℤ))
⇒ (¬(b = c ∈ (ℕ ⟶ ℕ)))))⌝⋅
)xxx }
1
.....assertion.....
1. a : ℕ ⟶ ℕ
2. b : ℕ ⟶ ℕ
3. ∀c:ℕ ⟶ ℕ. ((¬(a = c ∈ (ℕ ⟶ ℕ))) ∨ (¬(b = c ∈ (ℕ ⟶ ℕ))))
⊢ ∀c:ℕ ⟶ ℕ. ∃i:ℕ. (((i = 0 ∈ ℤ)
⇒ (¬(a = c ∈ (ℕ ⟶ ℕ)))) ∧ ((¬(i = 0 ∈ ℤ))
⇒ (¬(b = c ∈ (ℕ ⟶ ℕ)))))
2
1. a : ℕ ⟶ ℕ
2. b : ℕ ⟶ ℕ
3. ∀c:ℕ ⟶ ℕ. ((¬(a = c ∈ (ℕ ⟶ ℕ))) ∨ (¬(b = c ∈ (ℕ ⟶ ℕ))))
4. ∀c:ℕ ⟶ ℕ. ∃i:ℕ. (((i = 0 ∈ ℤ)
⇒ (¬(a = c ∈ (ℕ ⟶ ℕ)))) ∧ ((¬(i = 0 ∈ ℤ))
⇒ (¬(b = c ∈ (ℕ ⟶ ℕ)))))
⊢ ∃n:ℕ. (¬((a n) = (b n) ∈ ℤ))
Latex:
Latex:
\mforall{}a,b:\mBbbN{} {}\mrightarrow{} \mBbbN{}. ((\mforall{}c:\mBbbN{} {}\mrightarrow{} \mBbbN{}. ((\mneg{}(a = c)) \mvee{} (\mneg{}(b = c)))) {}\mRightarrow{} (\mexists{}n:\mBbbN{}. (\mneg{}((a n) = (b n)))))
By
Latex:
xxx(Auto THEN Assert \mkleeneopen{}\mforall{}c:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \mexists{}i:\mBbbN{}. (((i = 0) {}\mRightarrow{} (\mneg{}(a = c))) \mwedge{} ((\mneg{}(i = 0)) {}\mRightarrow{} (\mneg{}(b = c))))\mkleeneclose{}\mcdot{})xxx
Home
Index